Absence of fibroblast growth factor 2 promotes oligodendroglial repopulation of demyelinated white matter.
نویسندگان
چکیده
This study takes advantage of fibroblast growth factor 2 (FGF2) knock-out mice to determine the contribution of FGF2 to the regeneration of oligodendrocytes in the adult CNS. The role of FGF2 during spontaneous remyelination was examined using two complementary mouse models of experimental demyelination. The murine hepatitis virus strain A59 (MHV-A59) model produces focal areas of spinal cord demyelination with inflammation. The cuprizone neurotoxicant model causes extensive corpus callosum demyelination without a lymphocytic cell response. In both models, FGF2 expression is upregulated in areas of demyelination in wild-type mice. Surprisingly, in both models, oligodendrocyte repopulation of demyelinated white matter was significantly increased in FGF2 -/- mice compared with wild-type mice and even surpassed the oligodendrocyte density of nonlesioned mice. This dramatic result indicated that the absence of FGF2 promoted oligodendrocyte regeneration, possibly by enhancing oligodendrocyte progenitor proliferation and/or differentiation. FGF2 -/- and +/+ mice had similar oligodendrocyte progenitor densities in normal adult CNS, as well as similar progenitor proliferation and accumulation during demyelination. To directly analyze progenitor differentiation, glial cultures from spinal cords of wild-type mice undergoing remyelination after MHV-A59 demyelination were treated for 3 d with either exogenous FGF2 or an FGF2 neutralizing antibody. Elevating FGF2 favored progenitor proliferation, whereas attenuating endogenous FGF2 activity promoted the differentiation of progenitors into oligodendrocytes. These in vitro results are consistent with enhanced progenitor differentiation in FGF2 -/- mice. These studies demonstrate that the FGF2 genotype regulates oligodendrocyte regeneration and that FGF2 appears to inhibit oligodendrocyte lineage differentiation during remyelination.
منابع مشابه
Transcript profiling of different types of multiple sclerosis lesions yields FGF1 as a promoter of remyelination
Chronic demyelination is a pathological hallmark of multiple sclerosis (MS). Only a minority of MS lesions remyelinates completely. Enhancing remyelination is, therefore, a major aim of future MS therapies. Here we took a novel approach to identify factors that may inhibit or support endogenous remyelination in MS. We dissected remyelinated, demyelinated active, and demyelinated inactive white ...
متن کاملIn situ expression of fibroblast growth factor receptors by oligodendrocyte progenitors and oligodendrocytes in adult mouse central nervous system.
Basic fibroblast growth factor (bFGF) induces proliferation and alters differentiation of cultured oligodendrocyte lineage cells. In situ, bFGF is present in normal adult central nervous system (CNS) and upregulated during an early stage of various pathological conditions. We examined the expression of receptors for bFGF (FGFRs) by oligodendrocyte progenitors and oligodendrocytes in situ in nor...
متن کاملO-20: The Combination of Basic Fibroblast Growth Factor and Follicular Stimulating Hormone Promotes Human Follicle Development In Vitro Culture
Background Fertility preservation is an important part of scientific study in the field of reproductive medicine. Ovarian cryopreservation and in vitro follicles culture provide option for fertility conservation in older women or cancer patients. Basic fibroblast growth factor (bFGF) or FGF-2, is member of fibroblast growth factors family which play critical roles in cell migration proliferatio...
متن کاملPre-oligodendrocytes from adult human CNS.
CNS remyelination and functional recovery often occur after experimental demyelination in adult rodents. This has been attributed to the ability of mature oligodendrocytes and/or their precursor cells to divide and regenerate in response to signals in demyelinating lesions. To determine whether oligodendrocyte precursor cells exist in the adult human CNS, we have cultured white matter from pati...
متن کاملClemastine rescues myelination defects and promotes functional recovery in hypoxic brain injury.
Hypoxia can injure brain white matter tracts, comprised of axons and myelinating oligodendrocytes, leading to cerebral palsy in neonates and delayed post-hypoxic leukoencephalopathy (DPHL) in adults. In these conditions, white matter injury can be followed by myelin regeneration, but myelination often fails and is a significant contributor to fixed demyelinated lesions, with ensuing permanent n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2002